
New integrable problems of motion of a particle in the plane under the action of potential and

conservative zero-potential forces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 859

(http://iopscience.iop.org/0305-4470/32/5/015)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 07:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 859–865. Printed in the UK PII: S0305-4470(99)95226-5

New integrable problems of motion of a particle in the plane
under the action of potential and conservative zero-potential
forces

H M Yehia
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Department of Mathematics, Faculty of Science, King Abdulaziz University, PO Box 9028,
Jeddah, Saudi Arabia

Received 19 June 1998, in final form 6 October 1998

Abstract. We consider the general problem of plane motion of a charged particle under the action
of potential forces in the same plane and a magnetic field orthogonal to it. Four new integrable
cases are pointed out in which the gyroscopic (zero-potential) forces play an essential role. Physical
interpretation is given for some of the results in terms of motion under potential and Lorentz’ forces
in the rotating plane.

1. Introduction

Consider the problem of plane motion of a particle of unit mass under the action of forces of
velocity dependent potential characterized by the Lagrangian

L = 1
2(ẋ

2 + ẏ2) + l1ẋ + l2ẏ − V (1)

whereV, l1, l2 depend only on the coordinatesx, y. The equations of motion can be written
in the canonical variables using the Hamiltonian

H = 1
2[(px − l1)2 + (py − l2)2] + V. (2)

However, the Lagrangian equations of motion in their explicit form

ẍ = −�ẏ − ∂V
∂x

ÿ = �ẋ − ∂V
∂y

(3)

have the advantage of involving only the two functions� = ∂l1
∂y
− ∂l2

∂x
andV . For this reason

we shall characterize our system by those two functions.
System (3) admits the Jacobi integral

I1 = 1
2(ẋ

2 + ẏ2) + V = h. (4)

That is the Hamiltonian (2) written in the Lagrangian variables. For this system to be integrable,
or for the system described by the Hamiltonian (2) to be completely integrable in the sense of
Liouville, a second integral of motionI2 functionally independent ofI1 must be found.

When� ≡ 0 we can choosel1 = l2 = 0. The equations of motion become time reversible.
Only this version of the problem has been intensively studied over the past three decades for
integrability. The search resulted in a large list of integrable cases [1]. The second integral
was usually assumed a polynomial in the velocities (or momenta) whose degrees range up to
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the sixth. In particular, it was shown that a quadratic integral exists only in the cases when
the Hamilton–Jacobi equation is separable in one of the elliptic, parabolic, polar or Cartesian
coordinates [2].

Despite its importance in applications the time irreversible case� 6= 0 has not been
fully studied. Very few cases of existence of a quadratic integral are known but none of
higher-degree integrals. Until recently the list of those results comprised only the two cases
found by Vandervoort [3] and by Dorizziet al [4]. In our work [6] we have used a method
introduced in [5] to construct irreversible mechanical systems with two degrees of freedom,
whose configuration is not necessarily the Euclidean plane, and which admit quadratic integrals.
This method has proved successful in finding several new integrable problems. It turned out
that some of those new systems reduce naturally to plane systems when their parameters are
chosen to produce zero Gaussian curvature of their configuration spaces. In this way we have
obtained five irreversible plane systems including the previously known two [6].

In this work we introduce four new integrable cases. Some of those cases unify and
generalize previously found results of [6]. We also attempt a physical interpretation of some
of those cases.

2. Transformation of the equations of motion

It is well known that the system (3) is form-invariant on fixed levels of the integral (4) under
conformal transformations of the complexz-plane (see, e.g. [5, 6] and the references therein).
In fact, the change of variables and time

x + iy = z = z(ζ ) ζ = ξ + iη dt =
∣∣∣∣ dzdζ

∣∣∣∣2 dτ (5)

transforms (3) to the form

d2ξ

dτ 2
= −�̃dη

dτ
− ∂Ṽ
∂ξ

d2η

dτ 2
= �̃dξ

dτ
− ∂Ṽ
∂η

(6)

where

�̃ =
∣∣∣∣ dzdζ

∣∣∣∣2� Ṽ =
∣∣∣∣ dzdζ

∣∣∣∣2 (V − h). (7)

The integral (4) transforms to

1

2

[(
dξ

dτ

)2

+

(
dη

dτ

)2
]

+ Ṽ = 0 (8)

i.e. the original motion on the Jacobi levelh is equivalent to the transformed motion only on
the zero level of the Jacobi integral of the latter, while the constanth enters as a parameter in
the transformed potential.

We notice, however, an interesting case when the potentialV has the structure

V = V0 − h1

∣∣∣∣dζdz
∣∣∣∣2 (9)

whereh1 is an arbitrary parameter. In that case

Ṽ = V̄ − h1 V̄ =
∣∣∣∣ dzdζ

∣∣∣∣2 (V0 − h) (10)
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and (8) can be written as

1
2

[(
dξ

dτ

)2

+

(
dη

dτ

)2
]

+ V̄ = h1. (11)

The transformed motion can be considered free of the above restriction andh1 is just the Jacobi
constant for that motion. This situation will be used below to generate general integrable cases
from known ones.

3. New integrable cases

3.1. The first case

Let the pair of functions�,V in (3) be given by

� = 6ar2 + 2b (12)

V = Ax +By − h1r
2 − abr4 − a2r6 + 2a(ar2 + b)[4cdxy + (c2 − d2)(x2 − y2)] (13)

wherer =
√
x2 + y2 anda, b,A,B, h1, c, d are arbitrary parameters. Then, in addition to the

integral (4), system (3) admits the integral

I2 = a[(x − c)ẏ − (y − d)ẋ − 3
2ar

4 − 2a(dx − cy)2
−b(r2 + d2 + c2) + 2(ar2 + b)(cx + dy)]

×[(x + c)ẏ − (y + d)ẋ − 3
2ar

4 − 2a(dx − cy)2
−b(r2 + d2 + c2)− 2(ar2 + b)(cx + dy)]

−h1[xẏ − yẋ − 3
2ar

4 − 2a(dx − cy)2 − br2]

+1
2(Aẏ − Bẋ)− 2a(Ad − Bc)(dx − cy)− (ar2 + b)(Ax +By) (14)

and is thus integrable.
This case unifies two cases found in sections 5.4 and 6.3 of [6]. It involves two parameters

c, d more than the first and three parametersA,B, d more than the second. Note that the pair
�,V is form-invariant with respect to rotation of the axes at a fixed angle, but two parameters
can be added to it by translating the origin.

3.2. The second case

Now we shall apply to the previous case the transformation

z =
√

2ζ dt = dτ

2ρ
(15)

whereρ =
√
ξ2 + η2. We arrive at the form (6) in which

�̃ = 6a +
b

ρ

Ṽ − h1 = V̄ = − h

2ρ
− 2abρ − 4a2ρ2 + 4a

(
a +

b

2ρ

)
[2cdη + (c2 − d2)ξ ]

+
1

2ρ

(
A
√
ρ + ξ +B

√
ρ − ξ

)
.

(16)

This case involving seven parametersa, b, c, d, h,A and B is integrable. According to
section 2 it admits Jacobi’s integral

1
2

[(
dξ

dτ

)2

+

(
dη

dτ

)2
]

+ V̄ = h1. (17)
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The second integral can be deduced from (14) by enforcing the substitution (15). Note that
h1 appears in the integral (14) as a coefficient before a linear expression in the velocities. The
second integral in this case is a second-degree polynomial in velocities on the fixed levelh1 of
(17). In four-dimensional state space the second integral is a polynomial of the third-degree in
velocities. We do not need to write down the integral in general, since the explicit solution of
the equations of motion can be also deduced from that of the preceding case using the relations
(15) in the reverse way

ξ = x2 − y2

2
η = xy

τ =
∫
(x2 + y2) dt.

(18)

However, as we can see, both functionsṼ and�̃ exhibit a singularity at the origin when
b 6= 0. The potential is also double-valued in the plane if at least one of the parametersA,B

does not vanish. Moreover, the second integral will be quite complicated and double-valued.

3.2.1. A special case. In the caseA = B = 0 the potential and the second integral are
single-valued. For the sake of clarity we shall rename the physical variablesξ, η, τ asx, y, t
and write this case down as an integrable case of (3) in the form:

� = 6a +
b

r

V = − h
2r

+ 4a

(
a +

b

2r

)
[2cdy + (c2 − d2)x] − 2abr − 4a2r2.

(19)

The linear terms in the potential characterize a uniform field. Without loss of generality
we can direct thex-axis in the direction of that field and thus write

� = 6a +
b

r
V = − h

2r
− 2abr − 4a2r2 + gx

(
1 +

b

2ar

)
. (20)

The second integral corresponding to this choice is of the third degree and has the form:

I2 =
(
ẋ2 + ẏ2 − h

r
− 8a2r2 + 2gx

(
1 +

b

2ar

))
×[4a(xẏ − yẋ − 3ar2)− g(r − x)− 4abr]

−[4a(xẏ − yẋ − 3ar2)− g(r − x)− 2abr]2

+
g[yẏ − (r − x) ẋ − 4ayr − 2by]2

(r − x) + 4a2b2r2. (21)

This can be verified directly by the use of the equations of motion.
The case characterized by (20) generalizes the case indicated in [10]. In fact, when we

setb = 0 (20) reduces to:

� = 6a V = − h
2r
− 4a2r2 + gx. (22)

3.2.2. Physical interpretations of an integrable problem.In [10] case (22) was considered
as an approximate model for the problem of the motion of an electron in a hydrogen atom in a
circularly polarized microwave field and a static magnetic field orthogonal to the plane of the
polarization. For the purpose of potential application of this system in problems of physics
and mechanics, we attempt two different interpretations of the integrable system with� and
V as in (22).
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Rotating Stark potential and a rotating magnetic field.Consider a reference systemOxyz,
which is rotating, with respect to an inertial systemOXYz, with the uniform angular velocity
ω about the commonz-axis. Let a particle of unit mass and electric chargeq be moving in the
planez = 0 under the action of forces of potentialv = v(x, y). Moreover, assume that there
is a magnetic fieldH which is, in the rotating system, static, homogeneous and pointing in the
z-direction. The equations of motion can be shown to have the form (3) in the rotating frame,
where

� = −
(
2ω +

q

c
H
)

V = v(x, y)− 1
2ω

2r2 (23)

wherec is the speed of light (for a discussion of the Lorentz force see e.g. [9]).
To identify those expressions with (22) we take

a = − ω

2
√

2
(24)

and

v = − h
2r

+ gx
q

c
H =

(
3
√

2

2
− 2

)
ω. (25)

This means that the problem characterized by (23) is integrable for the choice (25). The
potential in the rotating plane is the Stark potential composed of a central Newtonian (or
Coulomb) term and a uniform field term. This problem is known to be integrable whenω = 0
(see, e.g., [7]). If, however, a uniform rotation is imposed, it becomes non-integrable [8].
Our result asserts that the rotating Stark problem becomes integrable (with quadratic second
integral) if we add a magnetic field orthogonal to the plane and rotate it. It is interesting to

note that the ratio of the Lorentz force to the Coriolis force is
q

c
H

2ω = 3
4

√
2− 1= 0.060 66.

Rotating Stark potential and a static homogeneous magnetic field.Consider a situation that
differs from the one just described only in that the magnetic fieldH is static in the inertial
frameOXYz. The equations of motion in the rotating frame can be shown to have the form
(3), where

� = −
(
2ω +

q

c
H
)

V = v(x, y)− 1

2
ω
(
ω +

q

c
H
)
r2. (26)

Note that in this case, unlike the previous one, the rotation has transformed the Lorentz force
and invoked a central potential term− qωH

2c r
2, which has the structure of a centrifugal or

centripetal force, depending on the signs of the parametersq, ω andH .
To identify those expressions with (22) we can take one of the choices:

a = −ω
2

and

v = − h
2r

+ gx
q

c
H = ω (27)

or

a = −ω
4

and

v = − h
2r

+ gx
q

c
H = −ω

2
. (28)

The problem characterized by (26) is integrable under either (27) or (28). Note that the ratio
q

c
H

2ω = 1
2,− 1

4 for the two choices, respectively.
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3.3. The third case

For the choice
� = 6ax
V = Ax +By − a(x2 + y2)[C + 1

2a(5x
2 + y2)] + 4a2bx3 (29)

equations (3) admit the second integral

I2 = a{ẏ − a(y2 + 3x2)− C}{(x − b)ẏ − yẋ − a[2x3− b(3x2 − y2) + 2xy2] − bC}
+1

2A[ẏ − a(y2 + 3x2)] − 1
2B[ẋ + 2ay(x + 2b)] (30)

and are thus integrable.
This case contains one parameterb more than that presented in section 6 of [6]. Note

that three more parameters can be added to the system (29), (30) by displacing the origin and
rotating the axes at a fixed angle about the new origin.

As in the previous subsection, we can give a physical interpretation of the present case.
A gyroscopic coefficient 6ax can be interpreted as a (nonuniform) magnetic field orthogonal
to the plane of motion. In fact, the three-dimensional scalar harmonic potentialVm = −6axz
gives rise to the magnetic fieldH = 6a(z, 0, x), whose restriction to the planez = 0 is
(0, 0, 6ax). Similarly, the potentialV in (29) is the plane restriction of the harmonic potential

V3d = Ax +By +C(2z2 − x2 − y2) + 4a2b(x3− 3xz2)

+a2[− 1
2(x

2 + y2)(5x2 + y2) + 6z2(3x2 + y2)− 4z4].

We do not claim, however, that the three-dimensional problem is integrable. To decide that
further investigation is needed.

It is noteworthy that system (29) can be used to generate another general integrable problem
through the application of the transformation (15). The resulting potential is multivalued and
the integral becomes of the third degree in the velocity.

3.4. The fourth case

This case results from the special case of section 6.2.1 of [6] when the Gaussian curvature of
the configuration manifold vanishes. If in (3) we take

V = Cα(α − a)
(a − α)x2 − αy2 + αa(α − a)

� = 1

2
C1(a − α)

[
α

(a − α)x2 − αy2 + αa(α − a)
]3/2 (31)

we shall have the second integral

I2 = [(x − a)ẏ − yẋ][(x + a)ẏ − yẋ] − C1[αyẋ + x(a − α)ẏ]√
(a − α)x2 − αy2 + αa(α − a)

+
α[8aCy2 − C1(a − α)]

4[(a − α)x2 − αy2 + αa(α − a)] . (32)

The equipotentials have the form of the conic sections

x2

αa
+

1

a(α − a)y
2 = 1− C

V a
.

The potential is finite in the whole plane only whenα < 0. Whenα > 0, the potential has a
singular line

x2

aα
+

1

a(α − a)y
2 = 1
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which is a hyperbola forα < a and an ellipse forα > a. In the last case, the motion of the
particle is possible only on one side of the singular line.

WhenC1 = 0, � = 0 and the system becomes time reversible and separable in elliptic
coordinates in the plane.
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